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1. Abstract 
  
 An Asymptotic Wave Expansion (AWE) technique is implemented into the EIGER 
computational electromagnetics code.  The AWE fast frequency sweep is formed by separating 
the components of the integral equations by frequency dependence, then using this information 
to find a rational function approximation of the results.  The standard AWE method is 
generalized to work for several integral equations, including the EFIE for conductors and the 
PMCHWT for dielectrics.  The method is also expanded to work for two types of coupled 
circuit-EM problems as well as lumped load circuit elements.  After a simple bisecting adaptive 
sweep algorithm is developed, dramatic speed improvements are seen for several example 
problems. 
 
2. Introduction 
 

Frequency domain techniques are popular for analyzing electromagnetics and coupled 
circuit-EM problems.  These techniques, such as the method of moments (MoM) and the finite 
element method (FEM), are used to determine the response of an antenna or other device in the 
sinusoidal steady state at a single frequency.  Because only one frequency is solved at a time, it 
may take a long time to calculate the parameters for wideband devices.  It is also a demanding 
task to calculate enough frequency points to perform an inverse Fourier transform to get the time 
domain response of the system. 
 Several techniques have been used to perform fast frequency sweeps, many of which are 
based on forming a Pade approximation to the system.  The Pade approximation, which is a 
rational function adaptation of the Taylor series, is first created for a single frequency expansion 
point.  The Pade function is then used to approximate the response of the system for frequencies 
around the expansion point.  For very wideband simulations, more than one expansion point may 
be used.  The Asymptotic Wave Expansion (AWE) method is one common technique for 
forming the Pade approximation.  It was first demonstrated in lumped-load circuit simulations, 
but has recently been shown to be effective at quasi-static and full wave simulations at low 
frequencies.  The AWE technique was successfully used for quasi-static–circuit simulations in 
[1]. 
 Recently, the AWE technique was implemented in EIGER, a frequency-domain code 
capable of MoM, FEM, and coupled MoM/FEM simulations.  It contains several Green’s 
functions, including those for homogeneous regions, layered material, and periodic structures.  It 
also has the ability to solve coupled circuit-EM problems by solving a combined system matrix 
or by finding a port representation of the EM section of a simulation. 
 The AWE formulation implemented in EIGER is based upon the separation of the system 
matrix into several sub-matrices with similar frequency content.  This may be done without 
much additional processor time if the different types of potentials are assembled into separate 
matrices rather than one unified system matrix.  Since each potential often has an explicit 
frequency dependence attached to it, this explicit frequency dependence is removed and used to 
determine which submatrix should contain each particular potential.  Note that the method does 
not account for frequency variation due to inter-element phasing from the Green’s function.  
Therefore, the AWE technique works best at lower frequencies where the inter-element phasing 
does not dominate. 
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The solution for each unknown and its derivatives are calculated from the frequency 
dependent submatrices.  These derivatives are used to form the Pade rational function 
approximation, which is used to find the approximation for other frequencies. [2]  When multiple 
excitation groups are used, several Pade functions are formed, one for each excitation group. 
 
3. Single Point AWE Surface Impedance Pade Expansion Formulation 
 
 A single point AWE expansion is used to solve for the unknowns and their derivatives 
with respect to frequency at a single frequency point.  The derivatives in a Pade rational function 
approximation are employed to extrapolate the results for arbitrary nearby frequencies.  In 
practice, the bandwidth from a single frequency expansion varies depending on the amount of 
allowable error and the geometry of the structure.  For many wideband solutions, or in cases 
where the error tolerance is very low, several AWE expansion points must be chosen.  However, 
for simplicity, the case of a single AWE expansion point will be discussed here and the 
multipoint extension will be discussed later. 
 The Electric Field Integral Equation (EFIE) is used to obtain the basic AWE expansion 
for a perfect electric conductor (PEC).  The mixed potential formulation for the EFIE is given by 
 

ijω +∇Φ = −A E ,                                                          (1) 
 

where A is the magnetic vector potential, Φ is the electric scalar potential, Ei is the impressed 
electric field, and ω is the radian frequency.  In supermatrix form, the equation is 
 

[ ] [ ] [ ]Z X Y= .                                                             (2) 
 
where Z is the system matrix, X is the unknown vector, and Y is the forcing function, in this case 
the incident field.  To perform AWE, the system matrix is separated with respect to frequency 
content as 

[ ] [ ]YXsBB
s

B
=⎥⎦

⎤
⎢⎣
⎡ ++ 21

0 ,                                                     (3) 

where s = jω.  In the case of the EFIE, the B0 component comes from the scalar potential, the B2 
component comes from the vector potential, and the B1 matrix is actually empty or zero.  Each of 
the B components is placed into its own separate matrix.  Note that this expansion ignores the 
frequency dependence due to phasing between elements and only accounts for the explicit 
frequency dependence in front of each term.  For this reason, it is more effective for quasi-static 
Green’s functions, where the phase term is neglected, or for electrically small structures, where 
the inter-element phasing is not significant.  The implementation in EIGER uses the full-wave 
Green’s function.  For that reason error metrics appear slightly worse than for codes using a 
quasi-static Green’s function. 
 When a surface impedance formulation is used, the governing equation becomes 
 

i
s sj Zω +∇Φ + = −A J E ,                                                     (4) 
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where the surface impedance term Zs has a ω -type frequency dependence.  This extra 
frequency dependence requires a different expansion term, g = ωj , and the expansion of the A 
matrix into more sub matrices as 
 

[ ] [ ]0
1 2 3

B B gB gB X Y
g

⎡ ⎤
+ + + =⎢ ⎥

⎣ ⎦
,                                             (5) 

 
where now the matrix B0 contains the scalar potential term, B1 is empty or zero, B2 is sparse and 
contains only the self terms used in the surface impedance formulation, and B3 contains the 
vector potential terms.  This expansion around g is convenient because it allows for the surface 
impedance formulation.  However, it does require more memory due to the added matrix. 
 After the system matrices have been filled, a k-moment AWE is performed around g = g0.  
To perform the AWE, the first k-derivatives of the unknowns will be used to form the Taylor 
series approximation.  The frequency is assumed to be such that g = g0 + σ, where g0 is 0ωj  
(ω0 is the expansion frequency) and σ is the scaled difference between the expansion frequency 
and the desired approximation frequency.  The equation for the AWE is 
 

( ) ( ) ( )( ) ( )22 3 4 2
0 1 2 3 4 0 1 2 0 1 2

k
kA A A A A X X X X Y Y Yσ σ σ σ ξσ ξσ ξσ σ σ+ + + + + + + + ≅ + +… . (6) 

 
Here, ξ is a scaling factor that is used to improve conditioning when finding the Pade 
coefficients.  The equation simply states that the Taylor series expansion of the system matrix 
times the Taylor series expansion of the unknowns needs to be approximately equal to the Taylor 
series expansion of the excitation vector.  The A and Y matrices are the Taylor series coefficients 
from taking multiple derivatives with respect to g.  The X vectors are the Taylor series 
coefficients for the unknown currents. 
 
The A matrices can be found from the B matrices as 
 

2 3 4
0 0 0 1 0 2 0

2 3
1 0 1 0 2 0 3

2
2 1 0 2 0 3

3 2 0 3

4 3

,

2 3 4

3 6 ,
4 , and

.
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d

                                               (7) 

 
If the excitation vector is assumed to be frequency independent, the Y vectors are given by  
 

2
0 0

1 0

2

,
2 , an

.

Y g Z
Y g Z
Y Z

=
=
=

                                                                    (8) 
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 If the excitation vector varies with frequency, as is the case with the phasing due to an 
incident plane wave, a different method that incorporates the actual first and second derivatives 
of the excitation vector should be used.  One way to do this is discussed later. 

Once the A and Y matrices are formed, they are used to find the X vectors in a recursive 
manner by equating like powers of σ.  The Xs can be found by solving the equations: 

0 0 0

1 1 0
0 1

2 1 1 2 0
0 2 2 2

1 2 2 1 3 0
0 3 2 3

1 1 2 2 3 3 4 4
0 2 3 4

, and

, 4n n n n
n
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Y A X A XA X

A X A X A XA X

A X A X A X A XA X n k

ξ

ξ ξ ξ

ξ ξ ξ

ξ ξ ξ ξ
− − − −

=
−

=

= − −

= − − −

= − − − − = … .

                             (9) 

 
 Since the problem of solving for the X vectors is a multiple right hand side problem, it is 
typically more efficient to find the LU factorization of A0 once, then use that to solve for each X, 
rather than using an iterative solver.  Overall, this solution should be O(N3) due to the LU 
factorization, while each of the matvecs and back substitutions are O(N2). 
 A fast frequency sweep could stop after the X vectors are determined, solving for each 
approximation frequency using the X vectors in a Taylor series approximation.  Such an 
approximation for the ith unknown is given by  
 

,i i k kX X τ= , 

⎥
⎥
⎥
⎥
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⎥

⎦
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τ
τ

τ  and ξστ = .                                              (10) 

 
 Equation (10) shows how individual unknowns can be solved across a broad frequency 
range without solving for all the unknowns.  After the system has been solved at the expansion 
point, only the unknowns of interest need to be computed at the other frequencies. 
 If the Taylor coefficients are used to form a Pade approximation, the approximate 
solution may be more likely to converge near resonances. [2]  Because the Pade approximation is 
a rational function, it can more closely match resonant behavior than a truncated power series.  
Typically L is used for the number of zeroes and M is the number of poles in the rational 
function.   The Pade approximation is then given by 
 

[ ] M
L

L
L

Padei bbb
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or 
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where the τ vector is a truncated top section of the τ vector in (10) and the L and M vectors 
contain the a and b coefficients. 
 

The most time consuming part of forming the Pade approximation is to find both the 
numerator and denomenator coefficients.  The denominator coefficients (b) are found by solving 
the Hankel matrix 
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for each unknown. [3]  This is not terribly time consuming because the matrix is only M×M and 
M is typically around 7 or 8, so the solution may be found fairly cheaply using direct methods.  
As for the Tailor series approximation, if it is known ahead of time that only the results for 
certain unknowns are needed, then not all of the L and M vectors have to be created, further 
cutting solution time. 
 Unfortunately, the denominator coefficient matrix can often be poorly conditioned, 
reducing the accuracy of the final solution.  One method which has been used to improve its 
conditioning is the ξ scaling factor shown in this formulation.  This scaling factor can be chosen 
such that all the Xs are roughly the same magnitude, which improves the conditioning of the 
denominator matrix.  There are at least three methods previously used to choose ξ.  All the 
methods rely on calculating at least some of the X vectors with an initial guess for ξ, then 
refining the value of ξ and re-calculating all the X vectors.  The initial guess for ξ is typically 
chosen to be ξ = (g0)-1.  Three of the methods are to choose are the following [1],[4]: 

 1. 0

1

X
X

ξ = , 

 2. 

1
1

0

1

L M

L M

X
X

ξ
+ −

+ −

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, or 

 3.  0

1

mean
X
X

ξ ξ
⎛ ⎞

= ⎜
⎝ ⎠

⎟ , where the division is performed element-wise. 

Method three is currently implemented for several reasons.  First, it requires only the 
computation of the first two x vectors before finding ξ , and second because it does not require a 
distinct ξ to be found for each unknown.  This method seems to work for practical problems 
when [L/M] is around [7/8]. [5] 
 Once the denominator coefficients have been found, the numerator coefficients can be 
solved from the recursive relation 

6 



0 0

1 1 1 0

2 1 1 1 2 0

min( , )

1

,
,

, and

.
L M

L L i L i
i

a X
a X b X
a X b X b X

a X b X −
=

=
= +
= + +

= + ∑

                                                      (14) 

 After the Pade approximations have been formed, the algorithm loops over the 
frequencies to find the fast solution.  The approximation is found using equation (2) at each 
frequency.  If an error metric is needed, the exact solution can be solved and compared to the 
AWE solution for each frequency.  
 
4. Plane Wave Correction and Multiple Excitation Vectors 
 
 An important part of an accurate AWE solution is approximating the derivatives of the 
excitation vector correctly.  The excitation can be considered constant for many types of 
excitations.  In these cases, the associated Y vectors are  
 

2
0 0

1 0

2

,
2 , an

,

Y g z
Y g z
Y z

=
=
=

d                                                              (15) 

 
where the z vector is the standard excitation vector filled normally.  Frequency independent 
excitation vectors result from delta-gap voltage sources and sinusoidal circuit excitations. 
 Plane wave illumination, a common way to excite problems, does not create a frequency 
independent excitation vector.  The phase on a plane wave excitation is 
 

00
ˆˆ

0
jjkV e e ω µε= = k rk r ii                                               (16) 

 
where  is the direction of the incident plane wave and r0 is the vector from the origin to the 
observation point on an element.  This phase clearly has a frequency dependence when the two 
vectors are not parallel.  While this phase shift can be ignored, it results in a decreased accuracy 
for the AWE solution [3]. 

k̂

 One method for correcting for the plane wave phase shift is to take the first two analytic 
derivatives of the plane wave phase and use them to fill the Y1 and Y2 vectors.  A more complete 
method would be to take k-derivatives to match to all the AWE moments.  However, using only 
the first two derivatives has the practical affect of halving the error norm and does not require 
storing any additional vectors. 
 The derivatives actually need to be taken on yc0 = g2V0, which is the phase coefficient 
used to generate the right-hand side for AWE.  First, the phase is expressed with respect to 
g = ωj , as 
 

2 2
0

ˆ
0

g gV e eµε φ= =k ri .                                              (17) 
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Next, the product rule is applied to find the first two derivatives of yc0: 
 

2
0 0

3
1 0

2 4 2
2 0

,

(2 2 ) , and

(4 10 2) .

yc g V

yc g g V

yc g g V

φ

φ φ

=

= +

= + +
                                         (18) 

 
 These equations for the y vectors can be used to increase the accuracy of AWE solutions 
with plane wave excitations. 
 Using multiple excitation groups for the same problem can be a useful technique.  For 
instance, if the monostatic radar cross section is desired at several different angles at the same 
frequency, the impedance matrix can be filled once and then solved with different excitation 
vectors representing each of the directions of the incoming plane waves.  
 Implementing multiple excitation groups in AWE is fairly straightforward.  Separate right 
hand side vectors Y0 through Y2 are formed for each excitation group and a different set of X 
moments are created.  From these moments, a Pade approximation for each unknown with each 
excitation group is formed.  This causes the amount of memory needed for the expansion 
frequency to increase by approximately (3+k)(N)(#excitation groups), where N is the number of 
unknowns in the problem.  This memory increase is still much more efficient then refilling the 
impedance matrix for each excitation group which is what is necessary without multiple 
excitation groups. 
 
5. Automated Multipoint Fast Frequency Sweep  
 
 In many cases a single frequency expansion point cannot be used to accurately calculate 
the approximations over the entire frequency range of interest, requiring a multipoint expansion.  
Several frequency expansion points are used, and the AWE method is applied to each one 
independently.  Each expansion point is used to form the approximations for frequencies within a 
certain range of its center frequency.  This multipoint method allows for a tradeoff between 
accuracy and efficiency. [6]  The fewer expansion points used, the quicker the solution and the 
lower the accuracy. 
 An automated method of choosing the center frequencies is necessary to reduce user 
input and to help ensure bounds on error.  User input expansion frequencies can lead to either 
over-resolution or to unacceptable error.  An automated method that assigns expansion points 
and tests their accuracy bandwidth is a better solution. 
 The method implemented in EIGER relies on a binary bisection method to choose the 
expansion points.  The first expansion point is chosen in the middle of the desired bandwidth.  
The approximation from this expansion is tested against the exact solution at the endpoints of the 
bandwidth.  If the AWE solution at the highest or lowest frequency has too much error, the 
interval between the expansion point and the endpoint is split and another expansion point placed 
between the two frequencies.  This process is repeated until the error in the approximation from 
each expansion point at the endpoints of the expansion point is within a specified tolerance.  
Once the expansion points are selected and solved, the approximations for all frequencies can be 
found by first finding the expansion point which is responsible for the frequency, then using the 
Pade approximation from that expansion point to calculate the approximate value. 
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 Figure 1 shows a graphical representation of this scheme.  The entire frequency range is 
shown as the black line.  Every circle is a frequency that is solved exactly.  The colored dotted 
lines show which expansion points are used to produce the approximation for a given frequency 
range.  In this example, the first frequency expansion point (Exp. 1) is chosen in the center of the 
range.  Since its approximation for the endpoints is not precise enough, both the top and bottom 
half are expanded around another point (Exp. 2 and Exp. 3).  The bottom half error is now 
acceptable and Exp. 2 is used to find the approximation for all the frequencies in the lower half.  
The upper half error is still not good enough, so the band is further divided into Exp. 4 and Exp. 
5.  The error for Exp. 4 is now tested against the exact solution at Exp. 1 and Exp. 3, and found 
to be acceptable.  The error for Exp. 5 at its endpoints is also acceptable, so the two are assigned 
half of the upper part of the frequency range. 
  
 
 
 
 
 

Highest 
Frequency 

Lowest 
Frequency 

Exp. 2 Exp. 1 Exp. 4 Exp. 3 Exp. 5  
 

Figure 1.  An example of the frequency expansion point distribution and the range of frequencies 
approximated by each point. 

 
 
 This method offers several strong advantages.  First, the error at the endpoints can be 
controlled.  While the error at the endpoints is not always the greatest error in a range, it usually 
is.  Because testing is only done at the endpoints, there is low overhead for the testing.  The exact 
solution at each expansion point is calculated during the AWE as the x0 vector.  In addition, this 
scheme can be implemented easily using a recursive technique and a tree data structure to hold 
the expansion points and their AWE data.  This tree structure is shown in Figure 2. 
 
 

Exp. 1 

Exp. 2 Exp. 3 

Exp. 4 Exp. 5 

Highest 
Frequency 

Lowest 
Frequency 

 
 
 
 
 
 
 
 
 
 
 

Figure 2.  The tree structure used to create and store the data from the frequency expansion points. 
 
 This technique can be further improved.  From Figure 1, it is clear that some expansion 
points are never used to find approximations even for frequencies near them.  This algorithm is 
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wasteful of the computational cost used to solve at these frequencies.  A more efficient algorithm 
is shown in Figure 3. 
 
 

Lowest 
Frequency 

Highest 
Frequency 

Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 

 
 
 
 
 
 
 

Figure 3.  A more efficient allocation of frequencies. 
 
Here every point that is solved exactly is assigned a region.  This should result in a lower error 
overall.  However, the exact point where a frequency should be controlled by one expansion 
point or another is less clear.  In Figure 1, each expansion point was used to the endpoints at 
which had proven to be accurate.  For Figure 2, some of the expansion points aren’t used as far 
from their center as they could be and other expansion points haven’t proven their accuracy out 
to the end of their range.  While the error is less rigorously controlled, it should be lower in 
general as error tends to increase away from an expansion point unless there is a strong nearby 
resonance.  The first scheme is the one currently implemented in EIGER.  However, it would be 
fairly easy to implement the second one later if desired. 
  
 
6.  Other Integral Equations 
 
 The Pade approximation need not be limited to conductors in free space.  It may be 
applied to any formulation where the operators may be separated by frequency type.  Once the 
frequency behavior of each operator is determined, it can be placed into one of the B matrices. 
 

PMCHWT 
 
 For the PMCHWT formulation, the equations for the electric and magnetic potentials are 

1( , ) ( ) ( ) ( ) and

1( , ) ( ) ( ) ( ).

j

j

ω
ε

ω
µ

= − −∇Φ − ∇×

= − −∇Ψ + ∇×

E J M A J J F M

H J M F M M A J
                          (19) 

 
Both the vector potentials A and F need to be filled into the B3 matrix, while the scalar potentials 
have a f-1 dependence and are filled into the B0 matrix.  The vector potential curl terms lack 
explicit frequency dependence and are filled into the B1 matrix.  The jump potentials on the self 
term, even though part of the vector potentials, need to be separated and filled into the B1 matrix. 
 Because the PMCHWT case contains no ω  frequency dependencies, it could be 
expanded around ω instead.  However, in order to keep a general formulation that will hold for 
multi region problems which may contain a combination of PMCHWT and surface impedance 
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boundaries, the expansion is still performed around ω .  Results with dielectrics aren’t quite as 
accurate as those for the EFIE.  This is probably due to a greater actual frequency dependence 
than is expressed explicitly for the PMCHWT. 
 

MFIE / CFIE 
 

 All of the potentials used by the MFIE are also used by the PMCHWT.  This means that 
once a code has AWE implemented for PMCHWT, it can automatically use AWE on the MFIE.  
The MFIE is expressed by 
 

ˆ ˆ( ) 0s i× + × =n H J n H ,                                                 (20) 
where 

1 ( )s

µ
= ∇×H A J .                                                       (21) 

 
 However, this leads to a situation where the matrix elements are only dependant upon the 
curl of A term that is filled into the frequency independent B1 matrix.  If AWE is applied to this 
system, it will produce a constant result.  That is, AWE will return the same values regardless of 
frequency because all the derivatives of the B1 matrix are zero.  For this reason, AWE should not 
be used with the MFIE.  Because the derivatives of the AWE matrices contain no useful 
information, a polynomial fit through a few sampled frequency points will provide a more 
accurate approximation than AWE. 
 An AWE formulation for the CFIE has a similar problem.  The CFIE is a combination of 
the EFIE and the MFIE.  The components of the AWE matrices from the EFIE will be correct, 
but only a frequency independent term will arise from the MFIE.  This prevents the use of AWE 
as an efficient method for the CFIE. 
 

Coupled Circuit-EM Formulations: Contacts and Coupled System Matrix 
  
 Mixed signal simulation has many applications, including EMC and active antennas.  
These software codes couple a circuit simulator with a full-wave EM simulator.  Very small 
lumped elements, such as resistors, capacitors, and solid-state devices are modeled using the 
circuit simulator.  The EM simulator handles interconnects, transmission lines, or large printed 
structures such as on-chip inductors.  Note that each of the two pieces improves the functionality 
of the other component.  For example, the EIGER EM simulation is capable of handling simple 
RLC lumped loads between elements.  The circuit simulation tie-in allows for more complex or 
active loads.  Many circuit simulators can handle transmission lines in lumped-parameter form.  
The addition of full-wave EM allows accurate modeling of the cross talk between transmission 
lines and accurate loss results for wideband simulations.  Since these types of applications are 
typically broadband in nature, the AWE fast frequency sweep is an important component of the 
overall simulation package.   
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 The method used to implement coupled systems in EIGER is the contact-connection 
algorithm. A circuit is attached to a spatially localized surface Sc by enforcing at this contact a 
modified current-continuity equation, a KCL connection, and a KVL connection from the contact 
to the circuit node.  The conditions enforced are equivalent to saying that the voltage at the EM 
contact element must be the same as the circuit node it is attached to and that any current flowing 
out of the circuit node must flow onto the surface of the contact EM element. This is shown in 
Figure 4.  

 

 
Figure 4: The connection scheme for the contact-circuit algorithm. 

On a contact surface Sc, the continuity equation is changed to account for the injecting 
branch current from the circuit through KCL. This current introduces an additional source term 
in the continuity equation and thus affects the distribution of both the electromagnetic surface 
currents and surface charges. Hence, the continuity equation is modified to become 

 
,    ,

0,  otherwise,
c cI r S

jωρ
∈⎧

∇⋅ + = ⎨
⎩

J                                                (22) 

 
where Ic is the contact current.  

In addition to adding a current to the EM element, the localized circuit source attached to 
the contact produces an additional source or sink of charge that alters the scalar potential and the 
resulting electric field. Because of this additional current, the scalar potentials must be tied to the 
circuit node voltage Vn. A KVL expression sets the scalar potentials at the equipotent circuit 
voltage Vn. Finally, the contact current is connected to the circuit by including an addition term Ic 
to the KCL based circuit equation associated at circuit node n. 

The PMCHWT-Circuit formulation, including the connecting KCL and equipotential 
KVL equations, may be summarized as the following block-matrix equation: 
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The two-region PMCHWT formulation along with the circuit can be combined into a 
large system which contains both the MoM matrix and a matrix of modified nodal analysis 
( MNA ) circuit equations representing lumped circuit elements: 
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                                   (24) 

 
Here the matrix X  expresses the coupling between the electromagnetic ( EM ) and circuit 

( MNA ) parts of the system. Also,  represents the voltages and currents in the circuit part of 
the system while ckt_ex  is a circuit excitation vector containing voltage and current sources.  
Finally,  and  are composite vectors containing both EM and circuit unknowns, and EM and 
circuit excitations, respectively.  

ckt

x z

In order to successfully apply AWE, each piece of this large block matrix must be filled 
into the appropriate AWE sub-matrix.  For the EM block, the only addition is the scalar potential 
introduced by the contact.  Since this is a scalar potential, it has a f-1 variation and can be added 
to the B0 matrix.  The MNA matrix can contain capacitive, resistive, or inductive elements, 
which should be filled into B0, B1, or B3 respectively.  The X blocks, which select the contact 
nodes which connect to a given circuit node, are filled entirely of 1 or 0.  Since the connection 
between elements and nodes does not change with frequency, these can be filled into the B1 
matrix. 

Apart from the filling of the AWE submatrices, there is one more difficulty which can 
arise with coupled circuit-EM problems.  Some of the circuit unknowns will have a solution 
which is completely independent of frequency.  This can occur when the unknowns represent the 
voltage or current at a voltage divider or a terminal of a source tied to ground.  In this case, the 
Hankel matrix used to solve for the denominator coeeficients of the Pade approximation will be 
singular.  To treat this case, a simple test can be performed before attempting to find the 
denominator coefficients.  If all of the derivatives of the solution (x1, x2 … xk) are zero, the 
numerator and denominator coefficients of the Pade rational function can be set to  
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                                               (25) 

which gives the correct frequency independent value without a singularity. 
 

Coupled Circuit-EM Formulations: N-port representation 
 
The large coupled matrix system can look directly at the impact the two systems have on 

one another. However, if either the circuit or EM configuration is to remain fixed while the other 
is changed, it is more efficient to develop a way to separate the two.  EIGER uses an N-port 
representation to do this.  The N-port result is a port admittance matrix showing the relation 
between the voltages and currents at each port for a given frequency.  This information can then 
be incorporated into the circuit model, and used to quickly and accurately evaluate many circuits 
using the same EM pieces.  

The N-port representation is a way to tie the EM matrix to the circuit matrix.  It does this 
by removing the EM unknowns (J) and replacing them with a port analysis based on circuit 
nodes. The N-port representation is given by 

 
XEMX ••= TNport .                                                        (26) 

 
 The X matrix has 1’s where circuit unknowns join the EM contacts.  The multiplications 
of EM with X is then equivalent to separately exciting each of the circuit contacts with a unit 
voltage.  The X transpose matrix selects the port currents and voltages for these excitations.  The 
end result is the N-port matrix, which shows the voltage and current at each circuit node for a 
unit voltage or current applied at any other node. 
 In order to solve for the N-port representation using AWE, it is expressed as a linear 
matrix equation with multiple right hand sides.  If EM is the number of EM unknowns, N is the 
number of circuit nodes, then the transformation is shown below 
 

[ ] [ ] [ ]
[ ] [ ] [ ]
[ ] [ ] [ ]EMxNEMxNEMxEM

EMxNEMxEMEMxN

EMxN
T
NxEMNxN

XMZ
XZM

MXNport

=
=

=
−1

.                                             (27) 

 
Now the intermediate matrix M is the result of a linear matrix system.  When each 

column of M is solved for using the matching column of X, the M matrix can be filled using a 
multiple right hand side AWE approach.  When the N-port approximate solution for a given 
frequency is desired, the M matrix is first found using the Pade approximations, then multiplied 
by the X transpose matrix.  This increases the cost per approximate frequency by O(N2) as the 
number of ports is assumed to be small relative to the number of EM unknowns.  While this 
method does increase the time to get an approximate solution using AWE, it allows for a more 
versatile output than the coupled circuit-EM solution only.  It also reduces the total number of 
unknowns in the matrix inversion. 

 
Lumped Loads 
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 Lumped loads can be incorporated into an electromagnetic simulation without resorting 
to a coupled circuit-EM simulation.  Implementing them directly into the circuit matrix, when 
appropriate, results in fewer unknowns then if a coupled formulation is used.  Lumped loads are 
inserted between element edges as shown in Figure 5.  They contribute only to the self term in 
the impedance matrix.  Since lumped loads only contribute to the self term, they can be 
implemented in AWE by modifying the self terms in the B matrices as appropriate. 
 
 

Z
 
 
 

Figure 5.  A lumped load connected between two surface elements 
 
 Three types of lumped loads are implemented in EIGER.  The Z loads, whose impedance 
does not vary with frequency, series RLC loads, and parallel RLC loads.  The Z loads are the 
easiest to handle in AWE.  The impedance value is simply filled into the B1 matrix.  For the 
series RLC load, the total impedance is given by 
 

Lj
LjRZ

ω
ω 1

++= .                                                     (28) 

 
This impedance is easily separated by frequency dependence.  The resistance is filled into B1, the 
inductance into B3 and the reciprocal capacitance into B0. 
 Parallel RLC loads are more difficult to implement.  The impedance for a parallel load is 
 

Lj
Cj

R

Z

ω
ω 11

1

++
= .                                                    (29) 

 
Unfortunately, this equation cannot be split up in terms of frequency components to match the 
standard AWE process.  An attempt was made to approximate the impedance using the equation 
 

321
0 gBBgB

g
BZ +++= .                                              (30) 

 
However, this form does not match the actual frequency dependence very well.  In fact, in some 
situations a simple constant approximation is more accurate.  The constant approximation is also 
easier to form, so it is currently used in EIGER.  It does not have the same accuracy bandwidth 
as for the other two types of impedance loads, but can still be more efficient than a sweep 
without AWE. 
 
7.  Results 
 A number of test cases were run using both EIGER and a Matlab implementation similar 
to EIGER.  These cases were used to test the AWE method as well as refine its operation. 
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PEC Dipole in free space with delta-gap source 
 
 To test the basic EFIE implementation, a strip dipole made of triangles was used.  There 
were 23 unknowns on the dipole and it was fed by a delta-gap source at its center.  The dipole 
dimensions were 39 cm × 1 cm, giving a resonant frequency of about 1.3 GHz.  The automated 
AWE frequency sweep was used and the resulting errors are shown in Figure 6.  The error norm 
of the approximation compared to the exact solution is shown by the diamonds, where each 
expansion point is shown as a square.  It is clear by the clustering of the expansion points near 
the upper bound that the AWE approximation becomes worse at higher frequencies. 

Error Norm for a 1.3 GHz Dipole
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Figure 6.  Error norm for a PEC dipole in free space.  The blue markers show error of AWE versus exact 

simulation.  The pink points show the expansion frequencies. 

 
As the frequency increases even further, it is apparent that the AWE becomes useless, requiring 
more expansion points than the desired sampling density.   This behavior can be seen in Figure 7.  
For this dipole, the AWE is only useful up to where the dipole is 1/8 of a wavelength or so. 
 
 The input impedance of the dipole is shown in Figure 8.  This plot compares both the 
exact results and AWE results.  It is clear that the AWE shows very good agreement with the 
exact solution. 
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Error Norm of Dipole Near Operating Frequency
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Figure 7.  The AWE error norm and expansion points near the operating frequency of 1.3 GHz. 
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Figure 8.  The input resistance and reactance of a PEC dipole.  Markers show the AWE approximation, while 

solid lines show the exact simulated solution. 

 For the frequency sweep up to 300 MHz, the exact solution took 77.11 seconds, while the 
AWE sweep completed in 12.4 seconds.  This gives an improvement ratio of 6.2.  If the exact 
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solution was needed at more points, the improvement from the AWE would be even more 
dramatic. 
  
 

Conducting Dipole in free space with delta-gap source 
 
 The same dipole was also simulated using a surface impedance boundary condition.  The 
conductivity used was 5.8E7, that of copper.  Because of a problem with EIGER, the surface 
load was not added to the center triangle, but was added to all other triangles.  The performance 
of AWE on this dipole was essentially the same as for the dipole in free space.  AWE required 
the same number of frequency points for the expansion and had approximately the same error. 
 

Dielectric Cube 
 
 The PMCHW formulation was tested on a simple dielectric cube.  The cube was tested 
with both a delta-gap source and a plane wave excitation.  The dielectric cube and the position of 
the voltage source are shown in Figure 9.  The cube is comprised of 12 triangles and has a side 
length of 10 cm.  It was simulated in free space, with the relative permittivity of the cube set to 
10. 

 
Figure 9.  A simple dielectric cube. 

 A comparison of the AWE error norms from a single frequency expansion point is shown 
in Figure 10.  The voltage source excitation produces the lowest error, while the plane wave 
source with the correct first two derivatives used in the y vectors has the next lowest error.  From 
this plot, it is clear why the plane wave correction is necessary. 
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Error Norms for Dielectric Cube
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Figure 10.  Error results for a simple dielectric cube.  The AWE performance is better for voltage sources 

than for plane waves, although the corrected plane wave form offers some improvement. 

 
Lumped Load Test 

 
 The lumped load formulation was tested for a simple ring configuration. The geometry of 
the ring is shown in Figure 11.  The ring is 10 cm on a side and is fed with a voltage source on 
one side and loaded with a lumped load on the other side.  For this structure at low frequencies, 
the lumped load should dominate current behavior.  Therefore, it is a good test of the lumped 
load formulation. 

 
Figure 11.  A square ring formed used to test the lumped load formulation.  At frequencies where the ring is 

electrically small, the lumped load should be the dominant factor in controlling surface currents. 

 
 The frequency independent Z load was tested first.  The load used was Z = 100 + j200 Ω.  
The error results, shown in Figure 12, show that one AWE point is sufficient to model the 
structure over a decade. 
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Z Lumped Load Error Norm
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Figure 12.  The error norms for a lumped load that is constant with frequency are very low. 

 A test with a series RLC circuit produced even better results.  The RLC circuit was 
chosen to be resonant at 10 MHz by setting R = 1000 Ω, L = 1.592E-7 H, C=1.592E-7 F.  For 
this case, a single AWE expansion point was suitable to model the problem over three decades.  
The time for AWE was 3.7 seconds, while the exact method took 58.5 seconds. 

Error Norm for Series RLC Load
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Figure 13.  The error performance for an electrically small ring containing a series RLC lumped load. 

 
 The RLC parallel lumped load was also tested.  Results around resonance were poor, so it 
was tested above resonance, choosing L= 1.592E-4 H and C=1.592E-4 F.  The parallel load 
required three expansion points, even though it was not near resonance.  Such poor behavior is 
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expected because the impedance of a parallel RLC circuit cannot be fit correctly into the AWE 
frequency seperation. 

Error Norm for Parallel RLC Load
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Figure 14.  The error norm for an electrically small ring with a parallel RLC load. 

 
Resistive Interconnect 

 
 
 
 A very simple test of the coupled circuit-EM formulation is a resistive interconnect.  The 
interconnect was modeled using the PMCHWT formulation, with a conductivity of 5.7E8 mhos 
on the interior.  The dimensions of the interconnect are 1 mm × 1 mm × 4 mm.  The interconnect 
is excited by a circuit voltage source which is connected to contacts on its ends, as shown in 
Figure 15.   
 

Vs

Vn2
Vn1

 
 

In 
In  

 
 
 
 

Figure 15.  The geometry and circuit definitions for the copper interconnect.  The interconnect dimensions 
are 1mm x 1mm x 4mm.  The circuit is connected to both ends by contacts. 

  
 
 The terminal resistance across the interconnect for both the AWE frequency sweep and 
the standard method in Figure 16.  The AWE required 24 minutes, while the exact method 
required 168 minutes.  This test showed that coupled circuit-EM problems can be solved 
successfully using the AWE method 
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Resistance of Copper Interconnect
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Figure 16.  Terminal resistance of the copper interconnect for both the fast and standard method. 

 
 

 
8.  Conclusion 
 
 The Asymptotic Wave Expansion method was developed and applied in the EIGER 
computational electromagnetic code.  The AWE method was expanded to include the PMCHWT 
dielectric formulation, lumped loads, and coupled circuit-EM problems.  A simple adaptive 
sweep was shown to be effective for some problems.  Good results were demonstrated for test 
problems including resistors and printed circuit dipoles.  
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